Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2023/2024

Научно-исследовательский семинар "Введение в исчисление Гудвилли"

Статус: Дисциплина общефакультетского пула
Когда читается: 3, 4 модуль
Охват аудитории: для всех кампусов НИУ ВШЭ
Язык: английский
Кредиты: 6
Контактные часы: 72

Course Syllabus

Abstract

"Given a smooth function $f:\mathbb{R}^n\to \mathbb{R}$, one can construct its Taylor series at the origin. The homogeneous components of the series are homogeneous polynomials with coefficients obtained by taking the derivatives of $f$ at $0$. Moreover, under some assumptions on $f, x\in\mathbb{R}^n$ and $k$ the value of the degree $k$ Taylor polynomial at $x$ approximates $f(x)$ reasonably well. Remarkably, under some hypotheses which are not too restrictive, all these statements have analogues for functors from (certain subcategories of) topological spaces to topological spaces. For example, the linear approximation of the functor of embeddings in a given manifold $M$ turns out to be the functor of immersions in $M$.These phenomena are described by the Goodwillie calculus. Our goal is to understand several examples in some detail with a focus on the embedding functor, and then to discuss the general formalism behind these constructions."