Бакалавриат
2023/2024
Математический анализ
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс обязательный (Экономический анализ)
Направление:
38.03.01. Экономика
Где читается:
Факультет экономических наук
Когда читается:
1-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Преподаватели:
Поляков Николай Львович
Язык:
русский
Кредиты:
8
Контактные часы:
112
Программа дисциплины
Аннотация
Дисциплина «Математический анализ-1» предназначена для студентов 1-го курса бакалавриата, обучающихся по направлению 38.03.01. «Экономика», образовательная программа «Экономический анализ». Формат изучения дисциплины - без использования онлайн курса. В курсе студенты познакомятся с базовыми знаниями теории пределов и непрерывных функций и дифференциального исчисления функций одной и многих переменных. Материал иллюстрирован большим числом примеров анализа экономических систем. Для освоения программы не требуются сведения, выходящие за пределы школьного курса.
Цель освоения дисциплины
- Добиться усвоения студентами теоретических основ, базовых результатов и теорем математического анализа, а также основных математических приемов и правил формального анализа и решения различных математических задач на основе полученных теоретических знаний
- Выработать у слушателей навыки решения типовых задач, способствующих усвоению основных понятий, а также задач, способствующих развитию начальных навыков научного исследования
- Выработать у слушателей навыки решения типовых задач, способствующих усвоению основных понятий, а также задач, способствующих развитию начальных навыков научного исследования
- Развить умение логически мыслить, оперировать с абстрактными объектами и быть корректным в употреблении математических понятий и символов для выражения количественных и качественных отношений
- Обеспечить запросы других разделов математики, использующих возникающие в математическом анализе конструкции
- Подготовить слушателей к чтению современных текстов по экономической теории, использующих модели и методы многомерного математического анализа
- Продемонстрировать возможность исследования зависимости экстремумов от параметров
- Научить слушателей давать оценку предельного поведения различных функций
Планируемые результаты обучения
- Студент вычисляет пределы функций и последовательностей.
- Студент вычисляет пределы функций нескольких переменных и приобретает навыки использования свойств непрерывных функций нескольких переменных.
- Студент вычисляет производные высших порядков, применяет необходимое условие экстремума, приобретает навыки использования формулы Тейлора.
- Студент вычисляет частные производные высших порядков, устанавливает достаточные условия экстремума, приобретает навыки использования формулы Тейлора для функций нескольких переменных.
- Студент дифференцирует функции нескольких переменных и устанавливает необходимое условие экстремума.
- Студент классифицирует подмножества R^n.
- Студент классифицирует числовые множества и функции и выполняет основные операции над ними.
- Студент приобретает навыки использования свойств непрерывных функций.
- Студент дифференцирует элементарные функции и приобретает навыки использования свойств дифференцируемых функций.
Содержание учебной дисциплины
- Числовые множества и функции
- Пределы
- Непрерывные функции одной действительной переменной
- Дифференцируемые функции одной действительной переменной
- Производные высших порядков, многочлены Тейлора, достаточные условия экстремума
- Исследование функций
- Множество R^n и его подмножества
- Непрерывные функции нескольких действительных переменных
- Дифференцирование функций нескольких действительных переменных
- Частные производные высших порядков, формула Тейлора и дорстаточное условие экстремума для функций нескольких действительных переменных
- Неявно заданные функции. Локальная обратимость. Зависимость функциональных систем
- Условные экстремумы
Элементы контроля
- Контрольная работа №2Длительность проведения контрольной - 80 минут. Контрольная работа состоит из 6 заданий. Для каждого задания указывается максимальное количество баллов, которое может получить студент за выполнение данного задания. Суммарное максимальное количество баллов за контрольную - 10. При неполном выполнении задания выставляется дробная оценка. Полученное студентом количество баллов N переводится в окончательный результат M по десятибалльной шкале по следующим правилам: N = 0 => M = 0. 0 < N ≤ 1,5 => M = 1. 1,5 < N ≤ 3 => M = 2. 3 < N ≤ 4,5 => M = 3. 4,5 ≤ N < 5,5 => M = 4. 5,5 ≤ N< 6=> M = 5. 6 ≤ N < 7 => M = 6. 7 ≤ N < 8 => M = 7. 8 ≤ N < 9 => M = 8. 9 ≤ N < 9,5 => M = 9. 9,5 ≤ N ≤ 10 => M = 10.
- Контрольная работа №1Длительность проведения контрольной - 80 минут. Контрольная работа состоит из 6 заданий. Для каждого задания указывается максимальное количество баллов, которое может получить студент за выполнение данного задания. Суммарное максимальное количество баллов за контрольную - 10. При неполном выполнении задания выставляется дробная оценка. Полученное студентом количество баллов N переводится в окончательный результат M по десятибалльной шкале по следующим правилам: N = 0 => M = 0. 0 < N ≤ 1,5 => M = 1. 1,5 < N ≤ 3 => M = 2. 3 < N ≤ 4,5 => M = 3. 4,5 ≤ N < 5,5 => M = 4. 5,5 ≤ N< 6=> M = 5. 6 ≤ N < 7 => M = 6. 7 ≤ N < 8 => M = 7. 8 ≤ N < 9 => M = 8. 9 ≤ N < 9,5 => M = 9. 9,5 ≤ N ≤ 10 => M = 10.
- Индивидуальное домашнее задание
- Участие в дискуссиях на семинарах
- ЭкзаменДлительность проведения экзамена - 100 - 160 минут (точная продолжительность экзамена сообщается студентам заранее). Экзаменационная работа состоит из 8 заданий. Для каждого задания указывается максимальное количество баллов, которое может получить студент за выполнение данного задания. Суммарное максимальное количество баллов за контрольную - 10. При неполном выполнении задания выставляется дробная оценка. Полученное студентом количество баллов N переводится в окончательный результат M по десятибалльной шкале по следующим правилам: N = 0 => M = 0. 0 < N ≤ 1,5 => M = 1. 1,5 < N ≤ 3 => M = 2. 3 < N ≤ 4,5 => M = 3. 4,5 ≤ N < 5,5 => M = 4. 5,5 ≤ N< 6=> M = 5. 6 ≤ N < 7 => M = 6. 7 ≤ N < 8 => M = 7. 8 ≤ N < 9 => M = 8. 9 ≤ N < 9,5 => M = 9. 9,5 ≤ N ≤ 10 => M = 10.
Промежуточная аттестация
- 2023/2024 учебный год 2 модуль0.1 * Индивидуальное домашнее задание + 0.2 * Контрольная работа №1 + 0.2 * Контрольная работа №2 + 0.1 * Участие в дискуссиях на семинарах + 0.4 * Экзамен
Список литературы
Рекомендуемая основная литература
- 9781292074610 - Knut Sydsaeter; Peter Hammond; Arne Strom; Andrés Carvajal - Essential Mathematics for Economic Analysis - 2016 - Pearson - https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1419812 - nlebk - 1419812
- Jacques, I. (2015). Mathematics for Economics and Business (Vol. 8th ed). Harlow: Pearson. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1419610
- Демидович, Б. П. Сборник задач и упражнений по математическому анализу : учебное пособие для вузов / Б. П. Демидович. — 24-е изд., стер. — Санкт-Петербург : Лань, 2022. — 624 с. — ISBN 978-5-8114-9078-3. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/184105 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
- Курс математического анализа : учебное пособие / А.М. Тер-Крикоров, М.И. Шабунин, 2-е изд. - Москва : ФИЗМАТЛИТ, 2001. - 669 с. ISBN 5-9221-0008-3 - Текст : электронный. - URL: http://znanium.com/catalog/product/544563
- Курс математического анализа : учеб. пособие для вузов, Тер-Крикоров, А. М., 2000
- Математический анализ и дифференциальные уравнения : учебник для вузов, Бурмистрова, Е. Б., 2010
- Сборник задач по математическому анализу : учебное пособие / Л. Д. Кудрявцев, А. Д. Кутасов, В. И. Чехлов, М. И. Шабунин. — 2-е изд., перераб. . — Москва : ФИЗМАТЛИТ, [б. г.]. — Том 3 : Функции нескольких переменных — 2003. — 472 с. — ISBN 5-9221-0308-3. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/2220 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
- Сборник задач по математическому анализу : учебное пособие / Л. Д. Кудрявцев, А. Д. Кутасов, В. И. Чехлов, М. И. Шабунин. — 2-е изд., перераб. и доп. — Москва : ФИЗМАТЛИТ, [б. г.]. — Том 1 : Предел. Непрерывность. Дифференцируемость — 2010. — 496 с. — ISBN 978-5-9221-0306-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/2226 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
Рекомендуемая дополнительная литература
- Линейная алгебра, дифференциальное исчисление функций одной переменной : учебник для вузов, Бурмистрова, Е. Б., 2010