• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2024/2025

Численные методы и методы оптимизации

Направление: 01.03.02. Прикладная математика и информатика
Когда читается: 3-й курс, 1, 2 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 3
Контактные часы: 52

Программа дисциплины

Аннотация

Является дисциплиной по выбору. Дисциплина направлена на ознакомление студентов с приближенными методами для решения задач интерполяции, аппроксимации, приближённого решения уравнений, возникающих при работе с данными и формирование практических навыков работы с данными и приближенного решения частых практических задач в области машинного обучения, оптимизации и имитационного моделирования. Для освоения дисциплины студентам необходимы знания, полученные в результате изучения дисциплин «Математический анализ», «Дифференциальные уравнения», «Теория вероятностей и математическая статистика».
Цель освоения дисциплины

Цель освоения дисциплины

  • Формирование у студентов теоретических знаний и практических навыков по основам применения численных методов для решения различных задач.
Планируемые результаты обучения

Планируемые результаты обучения

  • Знает основные приближенные методы для решения задач интерполяции, аппроксимации, приближённого решения уравнений, их ограничения и области применения, классы задач вычислительной математики и их постановки, способы построения численных методов, источники ошибок, понимание сходимости и устойчивости алгоритмов численного решения задач математического анализа и линейной алгебры.
  • Умеет реализовывать изученные алгоритмы в программном коде, выделять подзадачи, требующие приближенного численного решения, конструировать вычислительный алгоритм и реализовывать его, получать и использовать на практике априорные и апостериорные оценки, ориентироваться в математическом аппарате, используемом для построения методов, работать со справочной литературой, тестировать и проводить сравнительный анализ разных методов решения типовых задач.
  • Имеет навыки использования методов приближенного решения, применения их при моделировании реальных ситуаций.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Раздел 1. Прямые методы решения систем линейных уравнений (СЛАУ)
  • Раздел 2. Итерационные методы решения СЛАУ
  • Раздел 3. Численные методы аппроксимации табличных функций
  • Раздел 4. Численные методы решения задачи Коши для обыкновенных дифференциальных уравнений (ОДУ)
Элементы контроля

Элементы контроля

  • неблокирующий Домашнее задание
  • блокирующий Экзамен
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 4th module
    0.2 * Домашнее задание + 0.2 * Домашнее задание + 0.2 * Домашнее задание + 0.2 * Домашнее задание + 0.6 * Экзамен + 0.6 * Экзамен
  • 2024/2025 2nd module
    0.5 * Домашнее задание + 0.5 * Домашнее задание + 0.5 * Домашнее задание + 0.5 * Домашнее задание
Список литературы

Список литературы

Рекомендуемая основная литература

  • Пименов, В. Г.  Численные методы в 2 ч. Ч. 1 : учебное пособие для вузов / В. Г. Пименов. — Москва : Издательство Юрайт, 2021. — 111 с. — (Высшее образование). — ISBN 978-5-534-10886-6. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/472933 (дата обращения: 27.08.2024).
  • Численные методы : учебник и практикум для вузов / У. Г. Пирумов [и др.] ; под редакцией У. Г. Пирумова. — 5-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2021. — 421 с. — (Высшее образование). — ISBN 978-5-534-03141-6. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/468650 (дата обращения: 27.08.2024).

Рекомендуемая дополнительная литература

  • Сухарев, А. Г.  Численные методы оптимизации : учебник и практикум для вузов / А. Г. Сухарев, А. В. Тимохов, В. В. Федоров. — 3-е изд., испр. и доп. — Москва : Издательство Юрайт, 2021. — 367 с. — (Высшее образование). — ISBN 978-5-534-04449-2. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/487195 (дата обращения: 27.08.2024).

Авторы

  • Кольцов Сергей Николаевич
  • Кузнецов Антон Михайлович