• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2023/2024

Основы статистики

Статус: Маго-лего
Когда читается: 1, 2 модуль
Онлайн-часы: 20
Охват аудитории: для своего кампуса
Преподаватели: Жиянов Антон Павлович
Язык: русский
Кредиты: 3
Контактные часы: 6

Программа дисциплины

Аннотация

Курс посвящен введению в статистический анализ данных. Слушатели познакомятся с такими методами статистического анализа как дисперсионный, регрессионный и кластерный анализ. Мы научимся сравнивать группы между собой, рассчитывать коэффициенты корреляции и строить регрессионные уравнения. Основной акцент делается на математических идеях, интуиции и логике, которые обуславливают методы и расчетные формулы. Изученный материал будет применим для решения широкого круга задач, возникающих в рамках исследовательской работы практически любого направления. Будут рассмотрены методы анализа данных, которые наиболее часто применяются при статистической обработке результатов в широчайшем круге научных и прикладных областей. Помимо теоретических заданий слушателей ожидают интересные практические задачи. Знаний, полученных в результате прохождения данного курса, будет достаточно чтобы научиться более быстро и эффективно решать различные задачи, связанные с анализом данных.
Цель освоения дисциплины

Цель освоения дисциплины

  • Формирование комплексного представления об основных понятиях статистического анализа и освоение базовых методов статистического анализа.
Планируемые результаты обучения

Планируемые результаты обучения

  • Понимание основных понятий статистического анализа
  • Слушатели знают о принципах корреляционного и регрессионного анализа, способны использовать данные виды анализа и интерпретировать полученные с их помощью результаты.
  • Слушатели понимают принципы логистического регрессионного анализа, умеют применять его на практике и интерпретировать результаты.
  • Слушатели умеют выбирать и применять на практике подходящие методы для сравнения средних значений
  • Слушатели умеют выбирать и применять на практике подходящие непараметрические методы статистического анализа.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Основные понятия статистического анализа
  • Сравнение средних
  • Корреляция и регрессия
  • Анализ номинативных данных
  • Логистическая регрессия и непараметрические методы
  • Кластерный анализ и метод главных компонент
Элементы контроля

Элементы контроля

  • неблокирующий Тест
  • неблокирующий Экзамен
Промежуточная аттестация

Промежуточная аттестация

  • 2023/2024 2nd module
    0.7 * Тест + 0.3 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • Agresti, A. (2015). Foundations of Linear and Generalized Linear Models. Hoboken, New Jersey: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=941245
  • Field, A. V. (DE-588)128714581, (DE-627)378310763, (DE-576)186310501, aut. (2012). Discovering statistics using R Andy Field, Jeremy Miles, Zoë Field.

Рекомендуемая дополнительная литература

  • Gray, V. (2017). Principal Component Analysis : Methods, Applications, and Technology. Hauppauge, New York: Nova Science Publishers, Inc. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1464656
  • Rutherford, A. (2001). Introducing Anova and Ancova : A GLM Approach. London: SAGE Publications Ltd. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=251737
  • Основы статистики: Учебное пособие / С.А. Канцедал. - М.: ИД ФОРУМ: ИНФРА-М, 2011. - 192 с.: ил.; 60x90 1/16. - (Профессиональное образование). (переплет) ISBN 978-5-8199-0439-8 - Режим доступа: http://znanium.com/catalog/product/251392

Авторы

  • Никулин Сергей Вячеславович
  • Яхина Мария Рафаиловна