2023/2024
Основы статистики
Статус:
Маго-лего
Кто читает:
Базовая кафедра Института биоорганической химии им. академиков М.М. Шемякина и Ю.А. Овчинникова РАН
Когда читается:
1, 2 модуль
Онлайн-часы:
20
Охват аудитории:
для своего кампуса
Преподаватели:
Жиянов Антон Павлович
Язык:
русский
Кредиты:
3
Контактные часы:
6
Программа дисциплины
Аннотация
Курс посвящен введению в статистический анализ данных. Слушатели познакомятся с такими методами статистического анализа как дисперсионный, регрессионный и кластерный анализ. Мы научимся сравнивать группы между собой, рассчитывать коэффициенты корреляции и строить регрессионные уравнения. Основной акцент делается на математических идеях, интуиции и логике, которые обуславливают методы и расчетные формулы. Изученный материал будет применим для решения широкого круга задач, возникающих в рамках исследовательской работы практически любого направления. Будут рассмотрены методы анализа данных, которые наиболее часто применяются при статистической обработке результатов в широчайшем круге научных и прикладных областей. Помимо теоретических заданий слушателей ожидают интересные практические задачи. Знаний, полученных в результате прохождения данного курса, будет достаточно чтобы научиться более быстро и эффективно решать различные задачи, связанные с анализом данных.
Цель освоения дисциплины
- Формирование комплексного представления об основных понятиях статистического анализа и освоение базовых методов статистического анализа.
Планируемые результаты обучения
- Понимание основных понятий статистического анализа
- Слушатели знают о принципах корреляционного и регрессионного анализа, способны использовать данные виды анализа и интерпретировать полученные с их помощью результаты.
- Слушатели понимают принципы логистического регрессионного анализа, умеют применять его на практике и интерпретировать результаты.
- Слушатели умеют выбирать и применять на практике подходящие методы для сравнения средних значений
- Слушатели умеют выбирать и применять на практике подходящие непараметрические методы статистического анализа.
Содержание учебной дисциплины
- Основные понятия статистического анализа
- Сравнение средних
- Корреляция и регрессия
- Анализ номинативных данных
- Логистическая регрессия и непараметрические методы
- Кластерный анализ и метод главных компонент
Список литературы
Рекомендуемая основная литература
- Agresti, A. (2015). Foundations of Linear and Generalized Linear Models. Hoboken, New Jersey: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=941245
- Field, A. V. (DE-588)128714581, (DE-627)378310763, (DE-576)186310501, aut. (2012). Discovering statistics using R Andy Field, Jeremy Miles, Zoë Field.
Рекомендуемая дополнительная литература
- Gray, V. (2017). Principal Component Analysis : Methods, Applications, and Technology. Hauppauge, New York: Nova Science Publishers, Inc. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1464656
- Rutherford, A. (2001). Introducing Anova and Ancova : A GLM Approach. London: SAGE Publications Ltd. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=251737
- Основы статистики: Учебное пособие / С.А. Канцедал. - М.: ИД ФОРУМ: ИНФРА-М, 2011. - 192 с.: ил.; 60x90 1/16. - (Профессиональное образование). (переплет) ISBN 978-5-8199-0439-8 - Режим доступа: http://znanium.com/catalog/product/251392