Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2022/2023

Вероятность и статистика в высокой размерности

Статус: Курс обязательный (Математика машинного обучения)
Направление: 01.04.02. Прикладная математика и информатика
Когда читается: 1-й курс, 3, 4 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Прогр. обучения: Математика машинного обучения
Язык: английский
Кредиты: 6
Контактные часы: 68

Course Syllabus

Abstract

The course presents an introduction to modern statistical and probabilistic methods for data analysis, emphasising finite sample guarantees and problems arising from high-dimensional data. The course is mathematically oriented and level of the material ranges from a solid undergraduate to a graduate level. Topics studied include for instance Concentration Inequalities, High Dimensional Linear Regression and Matrix estimation. Prerequisite: Probability Theory.