• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2022/2023

Динамические стохастические модели общего равновесия

Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Направление: 38.04.01. Экономика
Когда читается: 2-й курс, 1, 2 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Преподаватели: Мишин Арсений Олегович
Прогр. обучения: Экономика и экономическая политика
Язык: английский
Кредиты: 6
Контактные часы: 40

Course Syllabus

Abstract

This course continues the sequence of macroeconomics courses for Master's students. It aims to deepen our understanding of modern tools used in the analysis of macroeconomic processes and policies. A challenge facing policymakers is how to evaluate the net effects of forces operating on different parts of the economy. Dynamic stochastic general equilibrium (DSGE) models are the leading tool for making such assessments in an open and transparent manner. DSGE models have also become the standard workhorse models for the analysis of aggregate fluctuations. The primary focus of this course will be on the analysis, solution, calibration, estimation, and extension of DSGE models. We will also emphasize computational methods and apply them to solve DSGE models.
Learning Objectives

Learning Objectives

  • To deepen understanding of modern tools for the analysis of macroeconomic processes.
  • To increase competitiveness of students in doing research where demand is rising for more rigorous work on studying macroeconomic processes.
  • To learn and practice quantitative methods which are actively used in modern macro research.
Expected Learning Outcomes

Expected Learning Outcomes

  • Critically evaluate the logic of DSGE modeling
  • Apply computer programs to the work with DSGE models.
  • Derive model's equations, compute the solution, perform model's calibration and estimation.
  • Learn how to introduce different changes into the basic RBC model and evaluate their effects on the main results.
  • Learn the theory and practice of parameter estimation in DSGE models using several examples and Dynare's estimation toolbox.
  • Learn some basic tools and apply them to the work with non-linear models.
  • Differentiate DSGE modeling with other approaches to macroeconomic modeling.
Course Contents

Course Contents

  • Overview of DSGE Models
  • Introduction to MATLAB and Dynare
  • The Methodology of DSGE Analysis: RBC Example
  • Extensions of the Basic RBC Model
  • Estimation of DSGE Models
  • Introduction to Non-linear Models
Assessment Elements

Assessment Elements

  • non-blocking Home Assignments
  • non-blocking Class Participation
  • non-blocking Presentation
  • non-blocking Report
Interim Assessment

Interim Assessment

  • 2022/2023 2nd module
    0.1 * Class Participation + 0.4 * Report + 0.3 * Home Assignments + 0.2 * Presentation
Bibliography

Bibliography

Recommended Core Bibliography

  • Macroeconomic theory : a dynamic general equilibrium approach, Wickens, M., 2008
  • Methods for applied macroeconomic research, Canova, F., 2007
  • Structural macroeconometrics, DeJong, D. N., 2007
  • The ABCs of RBCs : an introduction to dynamic macroeconomic models, McCandless, G., 2008
  • Wickens, M. (2008). Macroeconomic Theory : A Dynamic General Equilibrium Approach. Princeton: Princeton University Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=350058

Recommended Additional Bibliography

  • Bayesian estimation of DSGE models, Herbst, E. P., 2016
  • Kenneth L. Judd. (1998). Numerical Methods in Economics. The MIT Press.
  • Ljungqvist, L., & Sargent, T. J. (2012). Recursive Macroeconomic Theory (Vol. 3rd ed). Cambridge, Mass: The MIT Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=550665
  • Numerical methods in economics, Judd, K. L., 1998

Authors

  • MISHIN ARSENIY Олегович