Бакалавриат
2024/2025
Теория функций комплексного переменного
Статус:
Курс обязательный (Физика)
Направление:
03.03.02. Физика
Кто читает:
Факультет физики
Где читается:
Факультет физики
Когда читается:
2-й курс, 1, 2 модуль
Формат изучения:
с онлайн-курсом
Онлайн-часы:
20
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
4
Программа дисциплины
Аннотация
Главной целью курса «Теория функций комплексного переменного» является формирование у студентов навыков работы с функциями на комплексной плоскости, а так же введение в вычисление асимптотик функций, заданных интегральным представлением для комплексных значений аргумента. Значительное внимание уделяется отработке техники интегрирования в комплексной плоскости с участием многозначных функций, а так же понятию асимптотического ряда и явлению Стокса. Ряд семинарских задач посвящается применению полученных навыков к квантовой механике.
Цель освоения дисциплины
- формирование у студентов знаний основный понятий теории функции комплексного переменного;
- формирование у студентов навыков работы с функциями на комплексной плоскости;
- формирование у студентов навыков введение в вычисление асимптотик функций, заданных интегральным представлением для комплексных значений аргумента.
Планируемые результаты обучения
- Владеет методикой вычисления интегралов вычетами.
- Знает методы интегрирования и дифференцирования функций комплексного переменного.
- Знать основные определения, формулы и теоремы комплексного анализа и операционного исчисления.
- Иметь навыки (приобрести опыт): вычислять интегралы от функций комплексного переменного; вычислять интегралы с помощью теории вычетов; решать задачи для линейных дифференциальных уравнений операционным методом.
- Умеет применять теорему Коши и теорему о вычетах.
- Уметь определять возможности применения теоретических положений и методов теории функций теории функций комплексного переменного для постановки и решения конкретных прикладных задач; уметь решать основные задачи на вычисление интегралов при помощи вычетов, на разложение функций в ряды Тейлора и Лорана, применять методы операционного исчисления к решению дифференциальных и интегральных уравнений
- Уметь: исследовать функцию на аналитичность; разложить функцию в ряд Тейлора или Лорана; выделять однозначные ветви многозначных функций; находить отображения, осуществляемые элементарными аналитическими функциями; применять методы комплексного анализа для решения задач естествознания.
Содержание учебной дисциплины
- Алгебра комплексных чисел.
- Понятие ряда Лорана и определение вычета
- Практика по взятию контурных интегралов с помощью теоремы о вычетах
- Понятие многозначной аналитической функции и точки ветвления.
- Взятие интегралов со степенями при помощи контуров.
- Решение задачи Дирихле для двумерного уравнения Лапласа конформным отображением.
- Понятие асимптотического ряда.
- Уравнение Эйри. Явление Стокса.
Элементы контроля
- ЭкзаменПроводится в письменной форме. Билет на экзамене состоит из 5 задач. Во время сдачи экзамена запрещается пользоваться книгами, конспектами, компьютерами и телефонами.
- Контрольные работыКонтрольные работы проводятся в очной форме, во время их написания запрещается пользоваться какими-либо записями, а также компьютерами и телефонами.
- Домашние заданияДомашние задания выдается студентам дистанционно после каждого семинара. Каждое задание состоит из нескольких задач различной трудности, оцениваемой в максимальном количестве баллов, которое студент может получить за ее решение. Решения сдаются студентами в указанный срок в рукописном или (предпочтительно) в электронном виде.
Промежуточная аттестация
- 2024/2025 1st moduleФормула оценивания: Финальная оценка: (R) за работу в семестре формируется согласно формуле R = Abs[0.7[N] + I 0.3X]_down, где [N] - накопленная оценка N, округленная арифметически (то есть, до ближайшего целого числа), X - целочисленная оценка за экзамен. Знак [...]_down означает модуль соответствующего комплексного числа и округление до ближайшего снизу целого числа. Накопленная оценка N вычисляется по формуле N = 0.3S + 0.7K, где K - средняя оценка за две контрольные, а S - оценка за все остальное: решение домашних заданий, выступления на семинарах и т. п.
- 2024/2025 2nd module0.3 * Домашние задания + 0.4 * Контрольные работы + 0.3 * Экзамен
Список литературы
Рекомендуемая основная литература
- Карасев, И. П. Теория функций комплексного переменного : учебное пособие / И. П. Карасев. — Москва : ФИЗМАТЛИТ, 2008. — 216 с. — ISBN 978-5-9221-0960-4. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/2190 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
- Пантелеев А.В., Якимова А.С. - Теория функций комплексного переменного и операционное исчисление в примерах и задачах - Издательство "Лань" - 2015 - 448с. - ISBN: 978-5-8114-1921-0 - Текст электронный // ЭБС ЛАНЬ - URL: https://e.lanbook.com/book/67463
- Теория функций комплексного переменного : учебник / Е.С. Половинкин. — М. : ИНФРА-М, 2018. — 254 с. — (Высшее образование: Бакалавриат). — www.dx.doi.org/10.12737/6014. - Режим доступа: http://znanium.com/catalog/product/945532
- Эйдерман, В. Я. Теория функций комплексного переменного и операционное исчисление : учебное пособие для академического бакалавриата / В. Я. Эйдерман. — 2-е изд., испр. и доп. — Москва : Издательство Юрайт, 2019. — 263 с. — (Бакалавр. Академический курс). — ISBN 978-5-534-05498-9. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/437407 (дата обращения: 28.08.2023).
Рекомендуемая дополнительная литература
- Зверович, Э. И. (2008). Вещественный и комплексный анализ. В 6 ч. Ч. 6. Теория аналитических функций комплексного переменного. Belarus, Europe: Вышэйшая школа. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.3FEBAE99