• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2024/2025

Операционная аналитика

Направление: 38.03.01. Экономика
Когда читается: 4-й курс, 1 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 3

Программа дисциплины

Аннотация

We will focus on two themes: making optimal decisions anddealing with uncertainty and risk. We will start with basic business process analysis and find out how it could be analyzed using linear optimization techniques. Next, we will introduce uncertainty in our models of business processes and find out how Markov modeling techniques can help us understand and manage the resulting inefficiencies. (For example, how should an intensive care unit admit its patients?) After that, we will combine the two perspectives by looking at inventory management under uncertainty. For example, how should a fashion retailer decide on the order quantity for a new cool T-shirt? Developing these ideas, we will arrive at basic models of stochastic optimization, and apply them to strategic problems: for example, if acompany is investing in two new car factories, should these factories be able to produce multiple car models or should they be focused on a single one? Finally, we will arrive at multi-period models that could be solved with dynamic programming, which have applications from retailassortment planning to plane ticket selling to patient appointment scheduling.
Цель освоения дисциплины

Цель освоения дисциплины

  • This course aims to develop hands-on analytics skills by combining lecture-based classes focused on mathematical modeling with live coding sessions and programming-based homeworks. Additionally, a group project assignment encourages you to look for creative applications of the methods we explore – focused at a problem of your own choosing.
Планируемые результаты обучения

Планируемые результаты обучения

  • Implement optimization and simulation models in code.
  • Formalize business problems mathematically.
  • Apply linear and integer programming techniques to optimize business processes.
  • Model and manage uncertainty in business scenarios using Markov modeling and stochastic optimization.
  • Implement simulation models to evaluate complex systems under uncertainty.
  • Develop and analyze stochastic optimization models for decision-making under uncertainty, and understand their strategic implications.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Week 1
  • Week 2
  • Week 3
  • Week 4
  • Week 5
  • Week 7
  • Week 8
  • Week 6
Элементы контроля

Элементы контроля

  • неблокирующий Mini-Assignments
  • неблокирующий Class attendance and participation
  • неблокирующий Final project
  • неблокирующий Homeworks (data assignments and cases)
  • неблокирующий Homeworks (Operations analytics)
  • неблокирующий Final Exam
  • неблокирующий Midterm project
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 1st module
    0.25 * Class attendance and participation + 0.25 * Final Exam + 0.25 * Final project + 0.25 * Mini-Assignments
Список литературы

Список литературы

Рекомендуемая основная литература

  • Hochreiter Ronald. (2017). Applied Mathematical Programming and Modelling 2016. ITM Web of Conferences, 14, 00001. https://doi.org/10.1051/itmconf/20171400001
  • Nelson, G. S. (2018). The Analytics Lifecycle Toolkit : A Practical Guide for an Effective Analytics Capability. Hoboken, New Jersey: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1727899

Рекомендуемая дополнительная литература

  • Matt Taddy. (2019). Business Data Science: Combining Machine Learning and Economics to Optimize, Automate, and Accelerate Business Decisions. McGraw Hill.

Авторы

  • Петрова Наталья Борисовна
  • Антонова Екатерина Сергеевна