• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2024/2025

Научно-исследовательский семинар "Нейросетевое моделирование длинных языковых единиц"

Направление: 45.03.03. Фундаментальная и прикладная лингвистика
Когда читается: 4-й курс, 1, 2 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Преподаватели: Ляшевская Ольга Николаевна, Старченко Владимир Миронович
Язык: русский
Кредиты: 4

Программа дисциплины

Аннотация

Курс знакомит с основными сведениями о существующих инструментах автоматической обработки естественного языка, основанных на машинном обучении и нейронных сетях, формирует навык использовать, строить и оценивать искусственные модели для задач обработки языка, тренирует обучению собственных моделей. В курсе обсуждаются подходы к решению задач, требующих глубокой лингвистической проработки: генерация связанных текстовых фрагментов, специфика разработки моделей для малоресурсных языков, автоматизированное исправление ошибок.
Цель освоения дисциплины

Цель освоения дисциплины

  • дать представление о существующих инструментах автоматической обработки естественного языка, основанных на машинном обучении и нейронных сетях
  • сформировать представление о принципах работы данных инструментов
  • познакомить с основными фреймворками для решения задач АОЕЯ с применением нейронных сетей
  • познакомить с основными подходами к решению лингвистических задач с помощью нейронных сетей
Планируемые результаты обучения

Планируемые результаты обучения

  • Студент знает зачем необходима энкодер-декодер структура в вопросно-ответных системах
  • Студент знает и умеет выбирать векторные представления лексических единиц в соответствии с типом задачи.
  • Студент знает как построить языковую модель с использованием нейронной сети
  • Студент знает как применяются конволюционные нейронные сети при анализе тональности и какие признаки могут выделены c с помощью CNN
  • Студент знает как устроен “механизм внимания” в энкодер-декодер структурах моделей НЛП
  • Студент знает, как используется синтаксическое дерево при извлечении именованные сущности
  • Студент знает, что общего в задачах поиска ключевых слов и суммаризации текст
  • Студент знает о ключевых подходах к задачам автоматического анализа малоресурсных языков
  • Студент знает о ключевых подходах к задачам автоматического исправления ошибок с помощью нейросетей
  • Студент знает о ключевых подходах к проблеме генерации связного текста
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Векторное представление лексических единиц.
  • Языковые модели. Классификация текстов: бинарная и многоклассовая.
  • Анализ тональности.
  • Извлечение ключевых слов.
  • Извлечение именованных сущностей.
  • Вопросно-ответные системы. Диалоговые агенты.
  • Нейронный машинный перевод.
  • Решение задач, требующих глубокой лингвистической проработки
Элементы контроля

Элементы контроля

  • неблокирующий Экзамен
  • неблокирующий Лабораторная работа 2
  • неблокирующий Лабораторная работа 1
  • неблокирующий Лабораторная работа 3
  • неблокирующий Доклад по статье
  • неблокирующий Реферат по статье
  • неблокирующий Самостоятельная работа по подготовке проекта
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 2nd module
    Накопленная оценка О_Н рассчитывается по формуле : $$О_Н = (0.2 * (Доклад по статье ИЛИ Реферат по статье) + 0.3 * (Домашнее задание) + 0.3 (Самостоятельная работа по подготовке проекта)) / 7 * 10 $$ Оценка за экзамен О_Э выставляется в шкале от 0 до 10. По взаимному согласию студента и преподавателя оценка за экзамен может быть выставлена равной накопленной оценке. Итоговая оценка О_И вычисляется по формуле: $$ О_И = округление(0.7 * О_накопл + 0.3 * О_Э). Правила округления: Арифметическое
Список литературы

Список литературы

Рекомендуемая основная литература

  • Speech and language processing : an introduction to natural language processing, computational linguistics, and speech recognition, Jurafsky, D., 2009
  • Болотнова, Н. С. Современный русский язык: Лексикология. Фразеология. Лексикография: Контрольно-тренировочные задания : учебное пособие / Н. С. Болотнова, А. В. Болотнов. — 3-е изд., стер. — Москва : ФЛИНТА, 2016. — 224 с. — ISBN 978-5-9765-0739-5. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/85857 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Рекомендуемая дополнительная литература

  • Iba, H. (2018). Evolutionary Approach to Machine Learning and Deep Neural Networks : Neuro-Evolution and Gene Regulatory Networks. Singapore: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1833749

Авторы

  • Ляшевская Ольга Николаевна
  • Дьячкова Анна Евгеньевна