• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2024/2025

Бизнес-аналитика и прогнозное моделирование

Статус: Курс обязательный (Прикладной анализ данных)
Направление: 01.03.02. Прикладная математика и информатика
Когда читается: 3-й курс, 3, 4 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Язык: английский
Кредиты: 4

Course Syllabus

Abstract

Modelling is an important tool which all good managers should appreciate. The course extends and reinforces existing knowledge and introduces new areas of interest and applications of modelling in the ever-widening field of management.
Learning Objectives

Learning Objectives

  • the mechanics of building applied business models
  • managerial decision making
  • producing and critiquing forecasts
Expected Learning Outcomes

Expected Learning Outcomes

  • apply modelling at varying levels to aid decision-making
  • understand basic principles of how to analyse complex multivariate datasets with the aim of extracting the important message contained within the large amount of data which is often available
  • demonstrate the wide applicability of mathematical models while, at the same time, identifying their limitations and possible misuse
  • use BI systems to create data storytelling and visualisation
Course Contents

Course Contents

  • Introduction to Business analytics
  • Data collection. Sampling
  • Descriptive statistics. Confidence intervals
  • Hypothesis testing
  • Regression analysis
  • BI System Intro
  • KPIs and their hierarchies. Business metrics and their prioritization
  • Introduction to Tableau
  • Building Dashboards
  • Time-series analysis and forecasting
  • Optimization models
  • Monte Carlo simulation models
  • Data storytelling
Assessment Elements

Assessment Elements

  • non-blocking Group Case study
    Group work. Identify KPIs for a company or process.
  • non-blocking Group Project
    Building dashboard in Tableau and getting insights. Datasets – choice of students.
  • non-blocking Exam
    In-class paper-based exam
  • non-blocking Homework 2
    Group work. Data analytics and interpretation.
  • non-blocking Homework 1
    Group work. Data analytics and interpretation.
  • non-blocking Quizzes
Interim Assessment

Interim Assessment

  • 2024/2025 4th module
    0.3 * Exam + 0.15 * Group Case study + 0.2 * Group Project + 0.15 * Homework 1 + 0.1 * Homework 2 + 0.1 * Quizzes
Bibliography

Bibliography

Recommended Core Bibliography

  • Business analytics : data analysis and decision making, Albright, S. C., 2020

Recommended Additional Bibliography

  • Knaflic, C. N. (2015). Storytelling with Data : A Data Visualization Guide for Business Professionals. Hoboken, New Jersey: Wiley. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1079665

Authors

  • GLADKOVA MARGARITA ANATOLEVNA