Бакалавриат
2024/2025
Математический анализ-2
Статус:
Курс обязательный (Вычислительные социальные науки)
Направление:
01.03.02. Прикладная математика и информатика
Кто читает:
Кафедра высшей математики
Где читается:
Факультет социальных наук
Когда читается:
2-й курс, 1-4 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Преподаватели:
Гончаренко Василий Михайлович
Язык:
русский
Кредиты:
8
Программа дисциплины
Аннотация
Курс знакомит слушателя с основами разделов математики, необходимых для разработки и анализа алгоритмов, но остающихся за рамками традиционных вводных математических курсов. Среди рассматриваемых тем: арифметика остатков, формализм множеств и отношений, частичные порядки, графы, булевы функции и схемы, элементы комбинаторики, формальной логики, теории алгоритмов, функционального программирования. Поскольку курс адресован вчерашним школьникам, особое внимание уделяется знакомству с логико-математическим языком, простейшими приемами доказательств, понятиями индукции и рекурсии.
Цель освоения дисциплины
- • формирование у студентов базовых знаний о методах высшей математики
- • предоставление студентам аналитической базы для изучения по- следующих математических и специализированных курсов
- • развитие логического мышления и умения оперировать абстрактными объектами, привитие навыков корректного употребления математических понятий и символов для выражения различных количественных и качественных отношений
- • развитие навыка строгих математических рассуждений и доказательств
- • формирование у студентов навыков применения высшей математики в исследовательской деятельности
Планируемые результаты обучения
- • обучающийся должен УМЕТЬ: Устанавливать сходимость и находить суммы числовых рядов. Определять вид сходимости ряда. Находить значения бесконечных произведений. Устанавливать поточечную и равномерную сходимость функциональных рядов, в частности степенных рядов
- • обучающийся должен УМЕТЬ: Находить частные производные функций нескольких переменных, первый, второй дифференциалы, производные высших порядков, производные по направлению, экстремумы, применять метод множителей Лагранжа
- • обучающийся должен УМЕТЬ: Находить неопределенные и определенные интегралы, вычислять площади и объемы с их помощью, находить кратные, криволинейные и поверхностные интегралы. Применять формулы Грина, Стокса и Остроградского-Гаусса.
Содержание учебной дисциплины
- Дифференциальное исчисление функций нескольких переменных
- Числовые и функциональные ряды
- Интегральное исчисление
Элементы контроля
- Exam1Оценка за экзаменационную работу определяется суммой баллов, полученных за каждое задание экзамена
- Exam2Оценка за экзаменационную работу определяется суммой баллов, полученных за каждое задание экзамена
- Bonus1В каждое домашнее задание включена задача повышенной сложности (задача, отмеченная *). Решенную задачу нужно рассказать преподавателю. При успешной защите решения каждой такой задачи в ведомость добавляется 1 балл в раздел бонусных задач
- Bonus2В каждое домашнее задание включена задача повышенной сложности (задача, отмеченная *). Решенную задачу нужно рассказать преподавателю. При успешной защите решения каждой такой задачи в ведомость добавляется 1 балл в раздел бонусных задач
- HW1Домашнее задание выдается студентам еженедельно после каждого семинара
- HW2Домашнее задание выдается студентам еженедельно после каждого семинара
- Q1На каждом семинаре планируется самостоятельная работа продолжительностью 5-10 мин
- Q2На каждом семинаре планируется самостоятельная работа продолжительностью 5-10 мин
- Midterm1В конце первого или начале второго модуля проводится контрольная работа по темам первого модуля.
- Midterm2В конце третьего или начале четвертого модуля проводится контрольная работа по темам третьего модуля.
Промежуточная аттестация
- 2024/2025 2nd moduleП2=Промеж. аттестация 2 модуль =min[ОКРУГЛ(0.35*Exam1+0.25*Midterm1+0.2*HW1+0.2*Q1+Bonus1),10]
- 2024/2025 4th moduleП4=Промеж. аттестация 4 модуль =min[ОКРУГЛ(0.35*Exam2+0.25*Midterm2+0.2*HW2+0.2*Q2+Bonus 2),10]