Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2024/2025

Анализ социальных сетей

Статус: Курс обязательный (Аналитика данных для бизнеса и экономики)
Направление: 38.04.01. Экономика
Когда читается: 2-й курс, 1, 2 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Преподаватели: Антипов Евгений Александрович, Печерских Артур Андреевич
Прогр. обучения: Аналитика данных для бизнеса и экономики
Язык: английский
Кредиты: 3

Course Syllabus

Abstract

The network metaphor has become a prevalent part of conteporary societies. Ideas that have been developed in the social sciences over decades are now widely accepted by the general public. We frequently discuss the inportance of "networking", someone's "connections", or "social capital". The daily presence of social media platforms (e.g., Telegram, VK, Twitter) in our lifes – where we observe others' numbers of friends and are often surprised when two seemingly distant acquaintances turn out to be connected – makes the subject of this course self-evident on the surface. However, the social network analysis (SNA) is much more than just a common metaphor; it is a powerful and well-formalized set of methods used to study complex real-world phenomena, from the spread of rumors or diseases (as seen recently with COVID-19) to global trade networks and the rise and fall of creativity in cultural industries.SNA is an analysis-heavy subfield, meaning (1) it is challenging to come up with a general theory of social networks due to their diversity and complexity (viewing social reality relationally is one of the few unifing principles), and (2) it is difficult to grasp without hands-on experience with data.
Learning Objectives

Learning Objectives

  • To provide participants with essential insights into social networks and to equip them with the skills to analyze networks computationally.
Expected Learning Outcomes

Expected Learning Outcomes

  • To know how to develop researchable ideas how to test these ideas using available statistical software
Course Contents

Course Contents

  • Introduction
  • Centrality measures and network positions
  • Topology and network structures
  • 2-mode networks
  • Structural equivalence
  • Course overview and new directions
Assessment Elements

Assessment Elements

  • non-blocking Hometasks
    There will be 5 homework assignments throughout the course, but only your best 3 scores will be used to calculate your final grade. This means you can choose to complete all the homework or just 3 without it affecting your final mark. For the homework component, I will simply average your 3 highest grades. However, I strongly recommend reviewing each assignment, as completing them will better prepare you for the final project. Homework assignments are due before the start of the next class (the exact time is 18:10, Thursday, each week). If you submit an assignment within the following week, you can still earn up to 8 points. All assignments and projects should be submitted via email to ensure timely review and feedback.
  • non-blocking Exam
    The exam can be completed either individually or in groups of up to 4 students. Your task is to conduct a small research project and report your findings in a paper of approximately 4–5 pages (including visualizations, tables, and bibliography). These length guidelines are flexible, so feel free to write more or less if needed.
Interim Assessment

Interim Assessment

  • 2024/2025 2nd module
    0.4 * Exam + 0.6 * Hometasks
Bibliography

Bibliography

Recommended Core Bibliography

  • Chains of Affection: The Structure of Adolescent Romantic and Sexual Networks. (2004). Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.18C280A0

Recommended Additional Bibliography

  • R. Pitts. (1979). The Medieval River Trade Network of Russia Revisited. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.13ECA4E0

Authors

  • BUDKO Viktoriia ALEKSANDROVNA