Магистратура
2024/2025
Научно-исследовательский семинар "Современные тенденции в управлении и аналитике больших данных"
Статус:
Курс обязательный (Бизнес-аналитика и системы больших данных)
Направление:
38.04.05. Бизнес-информатика
Кто читает:
Департамент бизнес-информатики
Где читается:
Высшая школа бизнеса
Когда читается:
2-й курс, 1-3 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Прогр. обучения:
Бизнес-аналитика и системы больших данных
Язык:
английский
Кредиты:
6
Course Syllabus
Abstract
This course's key objective is to make the students familiar with implementing the most important big data concepts in various business domains. We will discuss industries like: Banking and Securities; Communications, Media and Entertainment; Healthcare; Education; Manufacturing and Natural Resources; Government; Insurance; Retail and Wholesale trade
Expected Learning Outcomes
- Describe the ethics, governance, and sustainability challenges relating to Big Data
- Design and evaluate an approach for the architecture of infrastructure for Big Data products based upon particular needs, including selecting an appropriate set of technologies, and governance strategy for storage and processing data
- Discuss the impact of digitization and the adoption of Big Data in business and overall society
- Explain the challenges of creating and maintaining Big Data products
- Demonstrate effective utilization of LLMs in academic writing while maintaining research integrity and scholarly standards
Course Contents
- Big Data Ecosystem
- (Big) Data Management
- Data Products and Economics
- Data Culture and Ethics
- Latest Trend of Scientific Writing using LLMs
Interim Assessment
- 2024/2025 3rd module0.1 * Activity during classes + 0.4 * Exam + 0.25 * Project defense + 0.25 * State-of-the-art
Bibliography
Recommended Core Bibliography
- 11 essentials of effective writing, Radaskiewicz McNeely, A. M., 2014
- GPT-3 : the ultimate guide to building NLP products with OpenAI API, Kublik, S., 2022
- GPT-4. Руководство по использованию API Open AI, Эль Амри, А., 2024
- Malaska, T., & Seidman, J. (2018). Foundations for Architecting Data Solutions : Managing Successful Data Projects: Vol. First edition. O’Reilly Media.
- Thomas Erl, Wajid Khattak, & Paul Buhler. (2016). Big Data Fundamentals : Concepts, Drivers & Techniques. Prentice Hall.
Recommended Additional Bibliography
- Jules S. Damji, Brooke Wenig, Tathagata Das, & Denny Lee. (2020). Learning Spark. O’Reilly Media.
- Kleppmann, M. (2017). Designing Data-Intensive Applications : The Big Ideas Behind Reliable, Scalable, and Maintainable Systems. Sebastopol, CA: O’Reilly Media. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=1487643
- Mark Richards, & Neal Ford. (2019). Fundamentals of Software Architecture : An Engineering Approach. O’Reilly Media.