Бакалавриат
2024/2025
Анализ данных
Статус:
Курс обязательный (Филология)
Направление:
45.03.01. Филология
Кто читает:
Кафедра фундаментальной математики
Где читается:
Факультет гуманитарных наук (Нижний Новгород)
Когда читается:
3-й курс, 3 модуль
Формат изучения:
с онлайн-курсом
Онлайн-часы:
20
Охват аудитории:
для своего кампуса
Преподаватели:
Багаутдинова Эльмира Рафиковна
Язык:
русский
Кредиты:
3
Программа дисциплины
Аннотация
Курс "Анализ данных на Python" нацелен на изучение языка программирования Python и получение базовых знаний и навыков для обработки, визуализации и статистического анализа данных, а также дальнейшего прохождения более специализированных курсов в этой области (например, машинного обучения). Первая часть дисциплины отведена на изучение основ языка Python, по итогам которой слушатели узнают о типах и структурах данных и освоят такие базовые понятия программирования, как условные операторы, функции, рекурсии и циклы. В рамках курса будут пройдены основы различных парадигм программирования: процедурное, функциональное и объектно-ориентированное программирование. Слушатели научатся решать задачи по парсингу, препроцессингу и визуализации данных с помощью стандартных и внешних библиотек Python. С использованием онлайн-курса "Основы программирования на Python" [URL:https://ru.coursera.org/learn/python-osnovy-programmirovaniya].
Цель освоения дисциплины
- Ознакомление студентов с основами программирования на языке Python
- Получение навыков обработки и анализа данных с применением библиотек языка Python
Планируемые результаты обучения
- Знать основные структуры данных и парадигмы программирования
- Знать синтаксис и семантику основных конструкций языка программирования Python
- Уметь собирать, предобрабатывать и визуализировать данные и выводить их описательные статистики
- Уметь формулировать аналитическую задачу и реализовывать ее выполнение на Python
Содержание учебной дисциплины
- Введение в инструменты
- Введение в статистику. Базовые манипуляции с данными
- Типы данных. Создание новых переменных
- Генеральная совокупность и выборка. Частотные таблицы и распределения
- Описательные статистики: меры центральной тенденции и разброса
- Z-оценка. Выбросы.
- Корреляция
- Введение в визуализацию данных
- Продвинутая визуализация данных