• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2024/2025

Стохастический анализ в финансах

Статус: Курс по выбору (Финансовый аналитик)
Направление: 38.04.08. Финансы и кредит
Где читается: Банковский институт
Когда читается: 1-й курс, 4 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Прогр. обучения: Финансовый аналитик
Язык: английский
Кредиты: 3

Course Syllabus

Abstract

Stochastic calculus is used in financial engineering. The minimum of required math will be covered: sigma-algebras, conditional expectations, martingales, Wiener process, stochastic integration. The big problem is that stochastic calculus is very hard from a mathematical viewpoint. We will formulate all the required theorems mostly without proofs.
Learning Objectives

Learning Objectives

  • The goal of this course is the Black and Scholes model and option pricing using martingale approach
Expected Learning Outcomes

Expected Learning Outcomes

  • understand the following mathematical concepts with their properties: – sigma-algebra – expectation with respect to sigma algebra – martingale – Wiener process – Ito’s stochastic integral
  • be able to formulate and apply in simple context the following theorems: – Ito’s lemma – Girsanov’s theorem
  • understand the Black and Scholes model: – price simple European options using martingale approach – price exotic European options using simulations in open sources like R, python or juli.
Course Contents

Course Contents

  • Sigma-algebras
  • Conditional expectation
  • Martingales
  • Wiener process
  • Ito’s integral
  • Ito’s lemma and Girsanov theorem
  • Black and Scholes model
Assessment Elements

Assessment Elements

  • non-blocking home assignment
  • blocking final exam
Interim Assessment

Interim Assessment

  • 2024/2025 4th module
    0.5 * final exam + 0.5 * home assignment
Bibliography

Bibliography

Recommended Core Bibliography

  • Applied econometric time series, Enders, W., 2010
  • Stochastic calculus for finance. Vol.2: Continuous-time models, Shreve, S. E., 2004

Recommended Additional Bibliography

  • Stochastic calculus for finance. Vol.1: The binomial asset pricing model, Shreve, S. E., 2004
  • Stochastic calculus of variations in mathematical finance, Malliavin, P., 2006

Authors

  • DEMESHEV BORIS BORISOVICH
  • ODINTSOVA ULYANA ALEKSANDROVNA
  • ELIZAROVA IRINA NIKOLAEVNA