Бакалавриат
2024/2025
Теория вероятностей и математическая статистика
Статус:
Курс обязательный (Прикладной анализ данных и искусственный интеллект)
Направление:
01.03.02. Прикладная математика и информатика
Кто читает:
Департамент информатики
Когда читается:
2-й курс, 3, 4 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Преподаватели:
Андреева Инга Александровна,
Гладкая Анна Владимировна,
Михайлов Михаил Дмитриевич,
Пусев Руслан Сергеевич,
Сафроненко Евгений Владимирович,
Сытенко Наталья Викторовна,
Храбров Александр Игоревич
Язык:
русский
Кредиты:
8
Программа дисциплины
Аннотация
Дисциплина базовой части профессионального цикла. Данная дисциплина служит основой для профессиональной ориентации студентов при выборе дисциплин из вариативной части Программы. Дисциплина направлена на формирование у студентов теоретических знаний и практических навыков по основам теории вероятностей и математической статистике как основного математического аппарата для построения моделей случайных явлений, освоение методов математического моделирования и анализа таких явлений. Для освоения дисциплины студентам необходимо иметь знания, полученные в результате освоения дисциплин «Математический анализ 2», «Алгебра».
Цель освоения дисциплины
- Формирование у студентов теоретических знаний и практических навыков по основам теории вероятностей и математической статистике как основного математического аппарата для построения моделей случайных явлений, освоения методов математического моделирования и анализа таких явлений.
Планируемые результаты обучения
- Знает основные понятия и факты теории вероятностей и математической статистики, такие, как вероятностное пространство, случайные величины, виды сходимости последовательностей случайных величин, выборка, оценки параметров, статистические критерии.
- Умеет вычислять числовые характеристики случайных величин, применять предельные теоремы теории вероятностей, находить предельное распределение марковских цепей, строить точечные и интервальные оценки параметров распределений.
- Имеет опыт использования статистических методов для решения задач оценивания параметров и проверки гипотез.
Содержание учебной дисциплины
- Раздел 1. Элементарная теория вероятностей
- Раздел 2. Общая теория вероятностей
- Раздел 3. Метод характеристических функций
- Раздел 4. Случайные процессы
- Раздел 5. Оценивание параметров распределений
- Раздел 6. Линейные статистические модели
- Раздел 7. Проверка статистических гипотез
- Раздел 8. Прикладные аспекты теории вероятностей и математической статистики
Элементы контроля
- Домашнее задание №2Домашнее задание №2 выдается студентам в одном варианте и состоит из 7 задач. Каждой задаче присвоен свой балл. Срок выполнения домашнего задания - 2 недели. Форма представления обучающимися домашнего задания - представленные в письменном виде решения задач.
- Экзамен №1Письменный экзамен №1 проводится в форме ответов на вопросы экзаменационного билета. Экзаменационный билет содержит два вопроса из перечня вопросов к экзамену. На подготовку ответа выделяется 2,5 часа.
- Домашнее задание №5Домашнее задание No3 выдается студентам в одном варианте и состоит из 9 задач. Каждой задаче присвоен свой балл. Срок выполнения домашнего задания - 2 недели. Форма представления обучающимися домашнего задания - представленные в письменном виде решения задач.
- Домашнее задание №1Домашнее задание №1 выдается студентам в одном варианте и состоит из 9 задач. Каждой задаче присвоен свой балл. Срок выполнения домашнего задания - 2 недели. Форма представления обучающимися домашнего задания - представленные в письменном виде решения задач.
- Домашнее задание №6Домашнее задание №4 выдается студентам в одном варианте и состоит из 6 задач. Каждой задаче присвоен свой балл. Срок выполнения домашнего задания - 2 недели. Форма представления обучающимися домашнего задания - представленные в письменном виде решения задач.
- Экзамен №2Письменный экзамен №2 проводится в форме ответов на вопросы экзаменационного билета. Экзаменационный билет содержит два вопроса из перечня вопросов к экзамену. На подготовку ответа выделяется 2,5 часа.
- Контрольная работаКонтрольная работа проводится в письменной форме. Каждый студент получает список из 5 задач. Для получения положительной оценки он должен решить не менее трех из них. На проведение работы отводится 1,5 часа.
- Контрольная работа №1
- Контрольная работа №2
- Коллоквиум №1
- Коллоквиум №2
- Домашнее задание №3
- Домашнее задание №4
Промежуточная аттестация
- 2024/2025 4th moduleПреподаватель учитывает работу на практических занятиях и оценку за текущий контроль (домашние задания). Отекущий = 0,15*Од/з1 + 0,15*Од/з2 + 0,15*Од/з3 + 0,15*Од/з4 + 0,2*К/р1 + 0,2*К/р2. Результирующая оценка за дисциплину рассчитывается следующим образом: ОРезультирующая = 0,3*Отекущий + 0,35*Околлоквиум1 + 0,35*Оэкзамен1
- 2025/2026 2nd module0.125 * Домашнее задание №5 + 0.125 * Домашнее задание №6 + 0.25 * Коллоквиум №2 + 0.25 * Контрольная работа + 0.25 * Экзамен №2
Список литературы
Рекомендуемая основная литература
- Попов, А. М. Теория вероятностей и математическая статистика : учебник для среднего профессионального образования / А. М. Попов, В. Н. Сотников ; под редакцией А. М. Попова. — 2-е изд., испр. и доп. — Москва : Издательство Юрайт, 2021. — 434 с. — (Профессиональное образование). — ISBN 978-5-534-01058-9. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/469686 (дата обращения: 27.08.2024).
- Теория вероятностей и математическая статистика : учебник / Е.С. Кочетков, С.О. Смерчинская, В.В. Соколов. — 2-е изд., испр. и перераб. — Москва : ФОРУМ : ИНФРА-М, 2020. — 240 с. — (Среднее профессиональное образование). - Текст : электронный. - URL: http://znanium.com/catalog/product/1059112
- Теория вероятностей с примерами и задачами: Учебное пособие / Ананьевский С.М., Невзоров В.Б. - СПб:СПбГУ, 2013. - 240 с.: ISBN 978-5-288-05491-4 - Режим доступа: http://znanium.com/catalog/product/940734
Рекомендуемая дополнительная литература
- Калинина, В. Н. Теория вероятностей и математическая статистика : учебник для вузов / В. Н. Калинина. — 2-е изд., перераб. и доп. — Москва : Издательство Юрайт, 2021. — 472 с. — (Высшее образование). — ISBN 978-5-534-02471-5. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/468770 (дата обращения: 27.08.2024).
- Малугин, В. А. Теория вероятностей и математическая статистика : учебник и практикум для среднего профессионального образования / В. А. Малугин. — Москва : Издательство Юрайт, 2021. — 470 с. — (Профессиональное образование). — ISBN 978-5-534-06572-5. — Текст : электронный // Образовательная платформа Юрайт [сайт]. — URL: https://urait.ru/bcode/473494 (дата обращения: 27.08.2024).