• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2024/2025

Цифровая обработка сигналов для систем искусственного интеллекта

Статус: Маго-лего
Когда читается: 3, 4 модуль
Охват аудитории: для всех кампусов НИУ ВШЭ
Язык: русский
Кредиты: 6

Программа дисциплины

Аннотация

В рамках курса подробно излагаются методы и принципы цифровой обработки сигналов.Дается понятие непрерывных и дискретных чисел, рассматриваются принципы дискретизации аналогово-цифрового и цифроаналогового преобразования.Рассматриваются классические алгоритмы обработки сигналов в частотной и временной областях.Дается понятие дискретного и быстрого преобразования Фурье, рассматриваются алгоритмы цифровой фильтрации на основе регрессионных моделей.Рассматриваются многомерный дискретный Фурье-анализРассматривается вейвлет-анализ, технологии обработки на основе атомарных функций, фрактальная обработка сигналов и обработка сигналов и полей на основе неортагональных функций.Материал курса рассматривается в контексте технологий искусственного интеллекта, формирования наборов входных данных, влияния на качество обучения и дообучения нейросети.Курс является логическим продолжением курса “Основы статистической теории обнаружения сигналов и распознавания образов в искусственном интеллекте” и взаимосвязан с курсами “Нейрокомпьютерные технологии и машинное обучение для систем искусственного интеллекта” и “Архитектура вычислительных систем и нейроускорителей”