• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2024/2025

Введение в методы сбора и анализа больших данных

Статус: Маго-лего
Когда читается: 1 модуль
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 3

Программа дисциплины

Аннотация

The growth of Internet penetration and the possibility of collecting and analyzing big data have produced new challenges and have offered new opportunities for researchers and official statistics. Within several years nonreactive and big data has become the main trend in the social sciences. Nonreactive methods include nonparticipant observation and analysis of digital fingerprints such as likes or shares, as well as private documents such as blogs, social media profiles and comments, or public online documents such as mass media materials. This course will give an introduction to key quantitative approaches to the collection of nonreactive data in social sciences. The course is taught in the form of lectures, seminars, and individual work using R studio. All teaching is conducted in English. The goal of the course is to introduce the opportunities of nonreactive and big data for social scientists and learn basic methods and tools to collect nonreactive data. Within the course some R studio packages will be used for data analysis. Basic knowledge of quantitative sociological methods is required. Familiarity with R studio is very helpful but not required. To run R studio, install it or use cloud version (freely available at: https://www.rstudio.com/products/rstudio/download/).
Цель освоения дисциплины

Цель освоения дисциплины

  • Know basic methods of collecting nonreactive data in social sciences
  • Know different types of big data in social sciences
  • Use skills to collect online data (Wikipedia, YouTube, etc).
  • Use skills to analyze textual data
Планируемые результаты обучения

Планируемые результаты обучения

  • Have skills to analyze textual data
  • Have skills to scrap online data through various APIs, automatization of actions in browser, and etc
  • Have skills to write R code for basic data analysis tasks
  • Know basic concepts of Big data, its opportunities, limitations, and relevance to social sciences
  • Know basic concepts of reactive and nonreactive data, its opportunities, limitations, and applications in social sciences
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Introduction to Big data
  • Introduction to R
  • Data scraping in R
  • Introduction to text mining and network analysis in R
Элементы контроля

Элементы контроля

  • неблокирующий Essay
  • неблокирующий Class activity
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 1st module
    0.4 * Class activity + 0.6 * Essay
Список литературы

Список литературы

Рекомендуемая основная литература

  • Big data : a revolution that will transform how we live, work and think, Mayer-Schonberger, V., 2013
  • Data mining with R : learning with case studies, Torgo, L., 2017
  • R в действии : анализ и визуализация данных в программе R, Кабаков, Р. И., 2014

Рекомендуемая дополнительная литература

  • ggplot2 : elegant graphics for data analysis, Wickham, H., 2009

Авторы

  • Бызов Александр
  • Михайлова Оксана Рудольфовна
  • Климова Айгуль Маратовна