• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2024/2025

Криптография на решётках

Статус: Маго-лего
Когда читается: 4 модуль
Охват аудитории: для всех кампусов НИУ ВШЭ
Язык: русский
Кредиты: 3

Программа дисциплины

Аннотация

Курс посвящён относительно новому направлению в криптографии–криптографии на решётках, которая известна также как постквантовая криптография. Как всегда, в основе криптографических протоколов лежит некоторая алгоритмически сложная задача. Здесь роль такой задачи выполняет задача о поиске кратчайшего вектора в решётке большой размерности. Все известные алгоритмы поиска короткого вектора имеют экспоненциальную (в зависимости от размерности) сложность. Поэтому, выбирая размерность достаточно большой (например, 1000), можно полагаться на стойкость криптосистем.В первой части курса будет дано краткое введение в геометрию чисел. Будет рассказано о решётках и их основных свойствах. Затем мы с разных сторон посмотрим на задачу о поиске короткого вектора в данной решётке. В частности, мы изучим алгоритм Эрмита, который можно рассматривать как предварительную версию LLL-алгоритма.Главная цель курса – познакомиться с LLL-алгоритмом – первым алгоритмом поиска короткого вектора, для которого удалось доказать полиномиальную сложность. Этот алгоритм позволил решать самые разнообразные задачи, но все его приложения останутся за границами курса.В заключение мы познакомимся с тем, как устроены криптографические протоколы на решётках, и поймём, зачем вообще надо искать короткие векторы.