• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2024/2025

Линейная алгебра

Статус: Курс по выбору (Экономика)
Направление: 38.03.01. Экономика
Когда читается: 1-й курс, 1, 2 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 6

Программа дисциплины

Аннотация

Дисциплина «Линейная алгебра» предназначена для студентов 1-го курса бакалавриата направление 38.03.01. Экономика, образовательные программы «Экономика», «Экономика и статистика». Формат изучения дисциплины - без использования онлайн курса. В курсе студенты познакомятся с базовыми знаниями теории линейных и евклидовых пространств, матричного анализа, аналитической геометрии и линейного программирования. Материал иллюстрирован примерами приложения основных результатов к построению и анализу экономических моделей. В период карантинных мер, все занятия и формы контроля проводятся дистанционно.
Цель освоения дисциплины

Цель освоения дисциплины

  • Добиться усвоения студентами теоретических основ, базовых результатов и теорем линейной алгебры, теории матриц и аналитической геометрии, а также основных математических приемов и правил формального анализа и решения различных математических задач на основе полученных теоретических знаний.
  • Подготовить слушателей к чтению современных текстов по экономической теории, насыщенных векторными, матричными и операторными обозначениями.
  • Обеспечить запросы других разделов математики, использующих возникающие в линейной алгебре конструкции.
  • Научить слушателей давать геометрическую интерпретацию многомерным объектам и строить аналитическое описание геометрическим соотношениям.
  • Продемонстрировать возможность бескоординатного описания линейных и квадратичных функций, подготавливая переход к изучению функционального анализа.
  • Выработать у слушателей навыки решения типовых задач, способствующих усвоению основных понятий, а также задач, способствующих развитию начальных навыков научного исследования.
  • Развить умение логически мыслить, оперировать с абстрактными объектами и быть корректным в употреблении математических понятий и символов для выражения количественных и качественных отношений.
Планируемые результаты обучения

Планируемые результаты обучения

  • Студент вычисляет определитель матрицы, решает системы линейных уравнений методом Крамера.
  • Студент вычисляет скалярные произведения векторов. Осуществляет ортогонализацию векторов. Находит расстояние от вектора до подпространства.
  • Студент вычисляет собственные значения и векторы линейного оператора (матрицы). Проверяет невырожденность матрицы с помощью теоремы Гершгорина о локализации спектра. Определяет сингулярные числа матрицы. Находит спектр стохастических матриц.
  • Студент находит координаты вектора в различных базисах, вычисляет матрицу линейного оператора в различных базисах.
  • Студент осуществляет операции над векторами и матрицами.
  • Студент осуществляет операции над векторами, устанавливает линейную зависимость и независимость векторов. Приводит матрицу к ступенчатому виду.
  • Студент приводит квадратичную форму к каноническому виду. Исследует ее на знакоопределенность
  • Студент проверяет матрицу на невырожденность; обращает невырожденные матрицы.
  • Студент раскладывает матрицы по матрицам полного ранга. Находит псевдорешение неоднородной несовместной или неопределенной системы линейных уравнений
  • Студент решает прямую и двойственную задачи линейного программирования
  • Студент решает системы линейных уравнений методом Гаусса и Гаусса-Жордана. Выражает решение неоднородной системы через одно частное решение неоднородной системы и фундаментальную систему решений приведенной однородной системы.
  • Студент решает стандартные геометрические задачи с помощью алгебраических методов.
  • Студент умеет решать вычислительные задачи над полем комплексных чисел.
  • Студент умеет производить арифметические операции с числовыми векторами. Студент вычисляет ранг системы векторов и матриц путем приведения матрицы к каноническому виду.
  • Студент производит арифметические операции с матрицами.
  • Студент вычисляет определители матриц, используя их основные свойства
  • Студент вычисляет обратную матрицу.
  • Студент решает системы линейных уравнений методом Гаусса и Гаусса-Жордана.
  • Студент вычисляет псевдообратную матрицу и находит нормальное псевдорешение системы линейных уравнений.
  • Студент получает представление о концепции линейного пространства и линейного преобразования. Студент вычисляет координаты вектора и матрицу линейного оператора в различных базисах линейного пространства.
  • Студент вычисляет собственные значения и собственные векторы линейных операторов и матриц. Студент проверяет матрицу на диагонализуемость и приводит ее к диагональному виду. Студент исследует матрицу на продуктивность.
  • Студент приводит симметричную матрицу к диагональному виду с помощью ортогонального преобразования. Студент приводит квадратичную форму к каноническому виду. Студент исследует квадратичную форму на знакоопределенность.
  • Студент приводит матрицу к жордановой форме. Студент использует жорданову форму матрицы для вычисления степени матрицы.
  • Студент овладевает концепцией евклидова пространства. Студент раскладывает вектор по ортогональному и ортонормированному базису. Студент осуществляет ортогонализацию базиса. Студент находит расстояние от вектора до подпространства.
  • Студент решает простейшие задачи линейного программирования. Студент находит решение двойственной задачи линейного программирования с помощью теорем двойственности.
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Поле комплексных чисел
  • Числовые векторы и матрицы
  • Элементы матричной алгебры
  • Определитель
  • Обратная матрица
  • Системы линейных уравнений общего вида
  • Нормальные псевдорешения систем линейных уравнений и псевдообратные матрицы
  • Линейные пространства и линейные операторы
  • Собственные значения и собственные векторы. Неотрицательные матрицы
  • Симметричные и ортогональные матрицы. Квадратичные формы
  • Жорданова форма матрицы
  • Евклидовы пространства
  • Элементы линейного программирования
Элементы контроля

Элементы контроля

  • неблокирующий Контрольная работа №1
    Длительность проведения контрольной - 80 минут. Для каждого задания указывается максимальное количество баллов, которое может получить студент за выполнение данного задания. Полученное студентом количество баллов переводится в окончательный результат по десятибалльной шкале обычным математическим округлением до ближайшего целого (но не выше 10 баллов).
  • неблокирующий Контрольная работа №2
    Длительность проведения контрольной - 80 минут. Для каждого задания указывается максимальное количество баллов, которое может получить студент за выполнение данного задания. Полученное студентом количество баллов переводится в окончательный результат по десятибалльной шкале обычным математическим округлением до ближайшего целого (но не выше 10 баллов).
  • неблокирующий Участие в дискуссиях на семинарах
  • блокирующий Экзамен
    Длительность проведения экзамена - 100-160 минут (точная продолжительность экзамена сообщается студентам заранее). Для каждого задания указывается максимальное количество баллов, которое может получить студент за выполнение данного задания. Полученное студентом количество баллов переводится в окончательный результат по десятибалльной шкале обычным математическим округлением до ближайшего целого (но не выше 10 баллов).
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 2nd module
    0.25 * Контрольная работа №1 + 0.25 * Контрольная работа №2 + 0.1 * Участие в дискуссиях на семинарах + 0.4 * Экзамен
Список литературы

Список литературы

Рекомендуемая основная литература

  • F. Aleskerov, H. Ersel, D. Piontkovski. Linear Algebra for Economists. Springer, 2011
  • Fuad Aleskerov, Hasan Ersel, & Dmitri Piontkovski. (2011). Linear Algebra for Economists (Vol. 2011). Springer.
  • Fuad Aleskerov, Hasan Ersel, & Dmitri Piontkovski. (2011). Linear Algebra for Economists. Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrep&AN=edsrep.b.spr.sptbec.978.3.642.20570.5
  • Гантмахер, Ф. Р. Теория матриц : учебное пособие / Ф. Р. Гантмахер. — 5-е изд. — Москва : ФИЗМАТЛИТ, 2010. — 560 с. — ISBN 978-5-9221-0524-8. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/2155 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Линейная алгебра, дифференциальное исчисление функций одной переменной : учебник для вузов, Бурмистрова, Е. Б., 2010
  • Проскуряков, И. В. Сборник задач по линейной алгебре : учебное пособие для вузов / И. В. Проскуряков. — 16-е изд., стер. — Санкт-Петербург : Лань, 2022. — 476 с. — ISBN 978-5-8114-9039-4. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/183752 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.

Рекомендуемая дополнительная литература

  • Дополнительные главы линейной алгебры : учеб. пособие, Беклемишев, Д. В., 2008
  • Кострикин, А. И. Введение в алгебру : учебник : в 3 частях / А. И. Кострикин. — 3-е изд., стер. — Москва : МЦНМО, 2020 — Часть II : Линейная алгебра — 2020. — 367 с. — ISBN 978-5-4439-3265-1. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/146750 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Кострикин, А. И. Введение в алгебру : учебник : в 3 частях / А. И. Кострикин. — 4-е изд. — Москва : МЦНМО, 2020 — Часть I : Основы алгебры — 2020. — 271 с. — ISBN 978-5-4439-3264-4. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/146749 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
  • Татарников, О. В., Линейная алгебра и линейное программирование для экономистов. : учебник / О. В. Татарников, В. Г. Шершнев, Е. В. Швед. — Москва : КноРус, 2018. — 258 с. — (для бакалавров). — ISBN 978-5-406-05913-5. — URL: https://book.ru/book/926173 (дата обращения: 26.08.2024). — Текст : электронный.

Авторы

  • Михайлец Екатерина Викторовна
  • Широков Дмитрий Сергеевич
  • Поляков Николай Львович