• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2024/2025

Специальные функции

Статус: Дисциплина общефакультетского пула
Когда читается: 3, 4 модуль
Охват аудитории: для всех кампусов НИУ ВШЭ
Язык: английский
Кредиты: 6

Course Syllabus

Abstract

The course suggests an accessible introduction to the theory of special functions of hypergeometric type. In particular, it concernes with Gauss hypergeometric function and functions given by transormations of degenerate hypergeometric function (Bessel dunction, Airy function, etc.) as well as their further generalizations: basic (q) hypergeometric series, elliptic hypergeometric functions and integrals. Nest to elementary functions, they are in the knowledge base of an educated mathematician, physicist, and chemist. The study of the properties of special functions reveals the elegance of methods that combine the means of real and complex analysis, differential and difference equations.