Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2024/2025

Алгебраическое введение в иерархию Кадомцева-Петвиашвили

Статус: Дисциплина общефакультетского пула
Когда читается: 1, 2 модуль
Охват аудитории: для всех кампусов НИУ ВШЭ
Язык: английский
Кредиты: 6

Course Syllabus

Abstract

Kadomtsev--Petviashvili hierarchy is an infinite system of pairwise commuting PDEs. It has a proper description in terms of the Lax operators and commuting flows, but in this course we will work with the KP hierarchy from the point of view of its solutions and will give a description of the formal solutions of the KP hierarchy through the points of the semi infinite Grassmannian. We start with the bosonic and fermionic Fock spaces and the isomorphism between them, then describe a symmetry group which maps one solution to the different one. Then we describe an orbit of this action as an infinite dimensional Grassmannian and rewrite the conditions on tau functions as Hirota bilinear equations. This point of view on KP hierarchy turns out to be very fruitful in applications. We will presents such example as Konstevich--Witten tau function, Orlov--Scherbin tau function and others.