Бакалавриат
2024/2025
Дискретная математика
Статус:
Курс обязательный (Компьютерные науки и анализ данных)
Направление:
01.03.02. Прикладная математика и информатика
Где читается:
Факультет компьютерных наук
Когда читается:
1-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Язык:
русский
Кредиты:
4
Программа дисциплины
Аннотация
Дискретная математика — курс, прививающий студентам азы математической культуры, нужные для последующего изучения как математических дисциплин, так и компьютерных наук. Курс знакомит с такими фундаментальными понятиями как множества, алгебра логики, функции и отображения, булевы функции, отношения и графы. Они являются фундаментом как для изучения математики и для структур данных в программировании. Разделы введение в теорию чисел и мощность множеств готовит студентов к изучению алгебры
Цель освоения дисциплины
- Знакомство с базовыми математическими понятиями.
- Развитие математической культуры (формулировки, изложение доказательств и т.п.).
- Изучение фундаментальных разделов, относящихся к дискретной математике (основы алгебры логики, основы теории множеств, использование кванторов, графы, основы комбинаторики, основы теории чисел).
Планируемые результаты обучения
- Владеть арифметикой остатков (вычетов). Уметь проверять элемент на обратимость, находить обратный элемент, решать линейные диофантовы уравнения от двух переменных с помощью алгоритма Евклида, знать базовые теоремы
- Владеть определениями и математическим аппаратом, связанным с функциями: образы, прообразы, инъекция, сюръекция, биекция
- Знать базовые комбинаторные числа: число перестановок, сочетаний, размещений, сочетаний с повторениями
- Знать базовые свойства бинарных отношений: рефлексивность, симметричность, транзитивность, антисимметричность, антирефлексивность, линейность; отношения эквивалентности, отношения частичного порядка
- Знать основы теории графов
- Знать основы теории множеств, владеть формулами алгебр множеств и логики
- Уметь решать базовые комбинаторные задачи: пользоваться правилами суммы и произведения, формулой включений-исключений
- Уметь строить разложениями в ДНФ и КНФ, проверять на полноту базис. Уметь строить булевы схемы, реализующие арифметические операции, уметь использовать их при решении задач. Уметь оценивать асимптотический размер булевых схем.
Содержание учебной дисциплины
- Алгебра логики
- Комбинаторика
- Множества и логика
- Основы теории чисел
- Двудольные графы, паросочетания и функции
- Ориентированные графы и отношения порядка.
- Теория графов
- Булевы функции
Элементы контроля
- Контрольная работа
- Проверочные работы на семинарах
- Домашние задания
- Коллоквиум 1
- Экзамен
- Коллоквиум 2
Промежуточная аттестация
- 2024/2025 2nd module0.3 * Домашние задания + 0.175 * Коллоквиум 1 + 0.125 * Коллоквиум 2 + 0.125 * Контрольная работа + 0.125 * Проверочные работы на семинарах + 0.15 * Экзамен
Список литературы
Рекомендуемая основная литература
- Lovász, L., Pelikán, J., & Vsztergombi, K. (2003). Discrete Mathematics : Elementary and Beyond. New York: Springer. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=108108
- Верещагин, Н. К. Лекции по математической логике и теории алгоритмов : учебное пособие / Н. К. Верещагин, А. Шень. — 3-е изд., стер. — Москва : МЦНМО, [б. г.]. — Часть 1 : Начала теории множеств — 2008. — 128 с. — ISBN 978-5-94057-321-0. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/9306 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.
Рекомендуемая дополнительная литература
- Верещагин, Н. К. Лекции по математической логике и теории алгоритмов : учебное пособие / Н. К. Верещагин, А. Шень. — 3-е изд., доп. — Москва : МЦНМО, [б. г.]. — Часть 2 : Языки и исчисления — 2008. — 288 с. — ISBN 978-5-94057-322-7. — Текст : электронный // Лань : электронно-библиотечная система. — URL: https://e.lanbook.com/book/9307 (дата обращения: 00.00.0000). — Режим доступа: для авториз. пользователей.