• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2024/2025

Машинное обучение

Направление: 01.04.02. Прикладная математика и информатика
Когда читается: 1-й курс, 3, 4 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Прогр. обучения: Искусственный интеллект в маркетинге и управлении продуктом
Язык: русский
Кредиты: 6

Программа дисциплины

Аннотация

Курс посвящен изучению основных методов машинного обучения. Изучаемые темы можно разбить на три блока. Первый — работа с данными и предварительный анализ данных. Изучаются библиотеки языка Python для работы с табличными данными и для визуализации, обсуждаются методы предобработки данных, подготовки категориальных и текстовых данных. Второй блок — обучение с учителем. Изучаются линейные модели, решающие деревья, композиции моделей (случайный лес, градиентный бустинг и его имплементации), приложения в рекомендательных системах. Третий блок — обучение без учителя. Изучаются методы кластеризации, визуализации, понижения размерности. Все темы сопровождаются практикой на реальных данных. По итогам курса слушатель сможет сформулировать задачу машинного обучения, выбрать метрику качества, обучить модель, подобрать гиперпараметры, провести валидацию.