Бакалавриат
2024/2025



Практики инженерии
Лучший по критерию «Полезность курса для Вашей будущей карьеры»
Лучший по критерию «Полезность курса для расширения кругозора и разностороннего развития»
Лучший по критерию «Новизна полученных знаний»
Статус:
Курс обязательный (Прикладной анализ данных и искусственный интеллект)
Направление:
01.03.02. Прикладная математика и информатика
Где читается:
Школа информатики, физики и технологий
Когда читается:
3-й курс, 2, 3 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Преподаватели:
Москвин Денис Николаевич
Язык:
русский
Кредиты:
4
Программа дисциплины
Аннотация
Дисциплина направлена на формирование у студентов теоретических знаний и практических навыков работы с большими данными. Курс посвящен программному решению проблемы надежного масштабируемого хранения и обработки данных и знакомит с особенностями работы с большими данными. Студенты познакомятся с различными моделями представления и обработки данных, а также освоят работу с контейнерами. Для освоения дисциплины студентам необходимо иметь знания, полученные в результате изучения дисциплин «Современные методы анализа данных», «Алгоритмы и структуры данных».
Цель освоения дисциплины
- Формирование у студентов теоретических знаний и практических навыков использования методом машинного обучения и естественной обработки текстов в области работы с кодом и разработки программного обеспечения.
Планируемые результаты обучения
- Умеет выбрать подходящий метод машинного обучения и естественной обработки текстов для создания модели или прототипа инструмента, помогающего в решении задач, возникающих при разработке программного обеспечения.
- Умеет реализовать сбор и предобработку данных на основе репозитория с исходным кодом.
- Имеет навыки использования существующих популярных библиотек, реализующих алгоритмы машинного обучения, для решения задач, актуальных в проектах по разработке программного обеспечения.
- Понимает основные виды деятельности, осуществляемые при разработке программного обеспечения, и то, как в них могли бы быть использованы методы машинного обучения.
Содержание учебной дисциплины
- Раздел 1. Постановка задачи машинного обучения в области программной инженерии
- Раздел 2. Использования машинного обучения для предсказания и оценки
- Раздел 3. Использование машинного обучения для задач синтеза кода
- Раздел 4. Использование машинного обучения для оптимизации архитектуры кода
- Раздел 5. Использование машинного обучения для поиска дубликатов
- Раздел 6. Использование техник обработки естественных языков
- Раздел 7. Использование машинного обучения для анализа кода
Список литературы
Рекомендуемая основная литература
- Zimmermann, T., Menzies, T., & Bird, C. (2015). The Art and Science of Analyzing Software Data. Amsterdam: Morgan Kaufmann. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=593414
Рекомендуемая дополнительная литература
- Kelleher, J. D. (2019). Deep Learning. Cambridge: The MIT Press. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=2234376