• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Бакалавриат 2024/2025

Теория вероятностей и математическая статистика

Статус: Курс обязательный (Маркетинг и рыночная аналитика)
Направление: 38.03.02. Менеджмент
Когда читается: 1-й курс, 3, 4 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Преподаватели: Панов Петр Алексеевич
Язык: русский
Кредиты: 4

Программа дисциплины

Аннотация

Учебная дисциплина посвящена изучению Теории вероятностей и математической статистики. Курс создает базу для изучения дисциплин, связанных с экономической и социальной статистикой, рыночной аналитикой, а также для дисциплин, реализуемых в рамках проекта Data Culture. Студенты, освоившие дисциплину, приобретают следующие знания и навыки: понимание основных концепций теории вероятностей и умение рассчитывать и интерпретировать основные статистические показатели, критерии и метрики, актуальные для маркетинга и бизнес-аналитики. Курс предполагает проверку теоретических знаний и практических навыков посредством проведения регулярных самостоятельных работ, оценивания работы на семинаре, контрольной и экзаменационной работ. Изучение дисциплины базируется на следующих дисциплинах: школьном курсе математики (включая раздел Теории Вероятностей) и курсе Высшей Математики, изучаемом на первом курсе. Для полноценного освоения дисциплины надо знать и понимать и уметь пользоваться: базовыми формулами комбинаторики (перестановки, размещения, сочетания, свойства биномиальных коэффициентов); знать простейшие операции над множествами; уметь вычислять вероятность в простейших задачах; понимать математический смыл выражений "не более", "менее", "как минимум" и тд. пределы, ряды – в простейшем виде; производные и поиск экстремума, в том числе функции нескольких переменных; интегралы – смысл и основные методы интегрирования. Основные положения дисциплины должны быть использованы в следующих курсах: Экономическая статистика, Социология, Финансовый и бухгалтерский учет, Финансовый менеджмент, Основы программирования на языке Python, Введение в Data Science, Маркетинговые исследования, Инструменты интернет-маркетинга и веб-аналитики, Анализ данных на Python и при сдаче экзаменов независимой оценки цифровых компетенций.