Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
2024/2025

Анализ данных и майнинг

Статус: Маго-лего
Когда читается: 1, 2 модуль
Охват аудитории: для своего кампуса
Язык: русский
Кредиты: 6

Программа дисциплины

Аннотация

This course serves as an introduction to Data Analytics and Mining, offering participants a foundational understanding of essential concepts and techniques in the field. During this course, students become acquainted with math concepts related to data science and master basic methods of collecting, processing, and transforming data using Python. The curriculum covers fundamental principles such as data preprocessing, visualization, classical machine learning methods, and deep neural networks. Topics include basics of classification methods, regression, image recognition, and natural language processing. Emphasizing practical skills, the course explores Python as a primary tool due to its accessibility and widespread use in data analysis. Geared towards beginners, it covers fundamental principles including data importation, storage, manipulation, and basic analytical methods. Designed to accommodate students with python programming experience, the course serves as a springboard into more specialized areas within Data Analytics and Mining, such as machine learning, statistical data processing, and data visualization.
Цель освоения дисциплины

Цель освоения дисциплины

  • The students will get familiar with Data Analysis and Mining techniques as well as basic concepts in Machine Learning. How to work with tabular data, preprocessing, cleaning, and exploratory data analysis. Also, the students will learn how to implement a simple machine-learning model for prediction task.
Планируемые результаты обучения

Планируемые результаты обучения

  • Students get familiar with Overview of Data Analysis and Mining, Importance and Applications in Industry, Types of Data: Structured vs. Unstructured, Overview of the Data Mining Process
  • Students get familiar with Data Cleaning
  • Students get familiar with EDA and data visualization
  • Students get familiar with statistical analysis
  • Students get familiar with Data Mining Techniques
  • Students get familiar with Machine Learning approaches
  • Students get familiar with Advanced Data Mining and Machine Learning
  • Students get familiar with Data Visualization and Reporting
Содержание учебной дисциплины

Содержание учебной дисциплины

  • Introduction to Data Analysis and Mining
  • Data Preprocessing and Cleaning
  • Exploratory Data Analysis (EDA)
  • Statistical Foundations for Data Analysis
  • Data Mining Techniques
  • Machine Learning Fundamentals
  • Advanced Data Mining and Machine Learning
  • Data Visualization and Reporting
Элементы контроля

Элементы контроля

  • неблокирующий Homework (module 1)
  • неблокирующий Test (module 1)
  • неблокирующий Homework (module 2)
  • неблокирующий Test (module 2)
  • неблокирующий Final Project
Промежуточная аттестация

Промежуточная аттестация

  • 2024/2025 2nd module
    0.4 * Final Project + 0.2 * Homework (module 1) + 0.2 * Homework (module 2) + 0.1 * Test (module 1) + 0.1 * Test (module 2)
Список литературы

Список литературы

Рекомендуемая основная литература

  • Han, J., & Kamber, M. (2011). Data Mining: Concepts and Techniques (Vol. 3rd ed). Burlington, MA: Morgan Kaufmann. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsebk&AN=377411
  • Han, J., Kamber, M., Pei, J. Data Mining: Concepts and Techniques, Third Edition. – Morgan Kaufmann Publishers, 2011. – 740 pp.
  • Hastie, T., Tibshirani, R., Friedman, J. The elements of statistical learning: Data Mining, Inference, and Prediction. – Springer, 2009. – 745 pp.

Рекомендуемая дополнительная литература

  • Core concepts in data analysis: summarization, correlation and visualization, Mirkin, B., 2011

Авторы

  • Сохраби Маджид
  • Антропова Лариса Ивановна
  • Коган Александра Сергеевна