Бакалавриат
2024/2025
Количественные методы в политических исследованиях
Статус:
Курс обязательный (Политология и мировая политика)
Направление:
41.03.04. Политология
Где читается:
Санкт-Петербургская школа социальных наук
Когда читается:
2-й курс, 1, 2 модуль
Формат изучения:
без онлайн-курса
Охват аудитории:
для своего кампуса
Язык:
английский
Кредиты:
6
Course Syllabus
Abstract
This course is an introduction to quantitative research methods in political science. By the end of this course, students should be able to effectively evaluate and analyze studies, which use quantitative methods of data collection and analysis; understand basic statistics and causality; and gain experience in collection, analysis, visualization and interpretation of quantitative data as part of an individual research project. No specific prerequisites are assumed for the class other than a basic understanding of algebra and ability to use a computer.
Learning Objectives
- Applies the heuristic capabilities of statistical program R for data visualization.
- Performs regression analysis using R and interprets its results.
- Presents the results of statistical analysis in a correct and understandible form.
- Uses specialized sources and databases to collect the relevant data for the quantitative research.
- Uses the heuristic capabilities of statistical program R for the data filtering, robustness checks and validation.
Expected Learning Outcomes
- Applies the heuristic capabilities of statistical program R for data visualization
- Performs regression analysis using R and interprets its results
- Presents the results of statistical analysis in a correct and understandible form
- Uses specialized sources and databases to collect the relevant data for the quantitative research
- Uses the heuristic capabilities of statistical program R for the data filtering, robustness checks and validation
Course Contents
- Introduction to the discipline: basic concepts and R basics
- Descriptive statistics
- Data Visualization: principles, tools, examples
- Statistical hypotheses and errors. Comparison of samples
- Chi-squared (x2) statistics
- Correlation
- Paired linear regression: principle, interpretation, design
- Multiple OLS regression: principle, interpretation, design
- Technical problems and prerequisites for OLS regression
- Substantive problems of regression models
- Panel regression, random and fixed effects
- Binary logistic regression: principle, interpretation, design
- Ordinal logistic regression: principle, interpretation, design
Assessment Elements
- ExamThe exam format is as follows. The student should prepare an R script reflecting the completion of the Exam tasks. The script should be workable, that is one should be able to get the desired result while using it. There are 4 blocks in the exam (4 broad questions). For each correctly completed task, the student receives a certain amount of points depending on the complexity of the task and the completeness of the answer to the question reflected in the R script and interpretation of the output. The exam is a closed format meaning that no preparatory materials are allowed, one should write a script from the scratch.
- Test ITest I is carried out in the classroom in writing form at the end of the first study module. It consists of 4 parts. Part A: 10 multiple choice questions. Part B: 10 multiple selection questions. Part C: 5 tasks for graphs interpretation. Part D: 5 tasks for test output interpretation
- Group projectGroup project is the final form of control, where students should demonstrate their data collection, data filtration, data visualization, data analysis and interpretation skills. The group for project implementation sjhould include 4 students max. While preparing the Group project, the use of AI tools for any purpose (including text translation, grammar checking, etc.) is prohibited.
- TrainingsEach week students should complete the training using R statistical software and provide the instructor with the training result in the form of an R script. While preparing the trainings, the use of AI tools for any purpose (including text translation, grammar checking, etc.) is prohibited.
- Test IITest II is carried out in the classroom in writing form at the second module of study. It consists of 4 parts. Part A: 10 multiple choice questions. Part B: 10 multiple selection questions. Part C: 5 tasks for graphs interpretation. Part D: 5 tasks for regression output interpretation
Interim Assessment
- 2024/2025 2nd module0.2 * Exam + 0.29 * Group project + 0.13 * Test I + 0.13 * Test II + 0.25 * Trainings
Bibliography
Recommended Core Bibliography
- Boso, À. (2006). KING, Gary; KEOHANE, Robert; VERBA, Sidney. Designing Social Inquiry: Scientific Inference in Qualitative Research. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsrac&AN=edsrac.52780
- Field, A. V. (DE-588)128714581, (DE-627)378310763, (DE-576)186310501, aut. (2012). Discovering statistics using R Andy Field, Jeremy Miles, Zoë Field. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edswao&AN=edswao.363067604
- Robert I. Kabacoff. (2015). R in Action : Data Analysis and Graphics with R: Vol. Second edition. Manning.
Recommended Additional Bibliography
- 9780205849574 - Barbara G. Tabachnick; Linda S. Fidell - Using Multivariate Statistics, 6th Edition - 2013 - Pearson - https://search.ebscohost.com/login.aspx?direct=true&db=nlebk&AN=1418064 - nlebk - 1418064
- Barbara Geddes. (1990). How the Cases You Choose Affect the Answers You Get: Selection Bias in Comparative Politics. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.633931A5
- Chinn, S. (1997). Statistics: Principles and Methods, 3rd edition (1996). Richard A. Johnson and Gouri Bhattacharyya. John Wiley & Sons, Inc., New York. Price: {pound}21.50. ISBN: 0-471-04194-7. Retrieved from http://search.ebscohost.com/login.aspx?direct=true&site=eds-live&db=edsbas&AN=edsbas.1875E2BE
- Hoffman, M., & Jamal, A. (2014). Religion in the Arab Spring: Between Two Competing Narratives. Journal of Politics, 76(3), 593–606. https://doi.org/10.1017/S0022381614000152