Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2023/2024

Научно-исследовательский семинар "Глубинное обучение"

Статус: Курс обязательный
Направление: 01.04.02. Прикладная математика и информатика
Когда читается: 2-й курс, 2 модуль
Формат изучения: без онлайн-курса
Охват аудитории: для своего кампуса
Преподаватели: Саночкин Юрий Ильич
Прогр. обучения: Магистр по наукам о данных (заочная)
Язык: английский
Кредиты: 3
Контактные часы: 10

Course Syllabus

Abstract

This course introduces the students to the elements of machine learning, including supervised and unsupervised methods such as linear and logistic regressions, decision trees, support vector machines, bootstrapping, random forests, boosting, regularized methods. Students will apply Python programming language and popular packages, such as pandas, scikit-learn, to investigate and visualize datasets and develop machine learning models that solve theoretical and data-driven problems. Pre-requisites: at least one semester of calculus on a real line, vector calculus, linear algebra, probability and statistics, computer programming in high level language such as Python.