Мы используем файлы cookies для улучшения работы сайта НИУ ВШЭ и большего удобства его использования. Более подробную информацию об использовании файлов cookies можно найти здесь, наши правила обработки персональных данных – здесь. Продолжая пользоваться сайтом, вы подтверждаете, что были проинформированы об использовании файлов cookies сайтом НИУ ВШЭ и согласны с нашими правилами обработки персональных данных. Вы можете отключить файлы cookies в настройках Вашего браузера.

  • A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2024/2025

Генеративные модели в машинном обучении

Статус: Курс по выбору (Математика машинного обучения)
Когда читается: 2-й курс, 1 модуль
Охват аудитории: для своего кампуса
Язык: английский

Course Syllabus

Abstract

Deep generative models are widely used in many areas of applied machine learning. In this course, we will look at modern architectures of generative models and learning algorithms. The lectures will highlight the main approaches proposed, and analyze their main advantages and disadvantages. The seminars will cover examples of generating images, texts, and other objects using variational autoencoders (VAE), generative adversarial networks (GANs), autoregressive models, normalizing flows, and other approaches. The assignments in the seminars are motivated by well-known applications of generative models in science and industry.