• A
  • A
  • A
  • АБB
  • АБB
  • АБB
  • А
  • А
  • А
  • А
  • А
Обычная версия сайта
Магистратура 2024/2025

Теоретические методы глубокого обучения

Статус: Курс по выбору (Математика машинного обучения)
Когда читается: 2-й курс, 2 модуль
Охват аудитории: для своего кампуса
Язык: английский

Course Syllabus

Abstract

Deep Learning (DL) is a highly promising and popular applied science that, at present, is poorly understood theoretically. We know that neural networks work well, but cannot fully explain why. Nevertheless, in the last few years, there has been a rapid growth of publications that shed light on the new mathematics underlying DL, and we see now many interesting connections between DL and other fields such as approximation theory, differential equations, information theory, random matrix theory and statistical physics. This course aims to introduce students to these cutting-edge developments.